Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.
نویسندگان
چکیده
Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation - particularly Fe and Mo - can be understood in terms of the history of metal availability through time. Anoxic, Fe-rich Archean oceans were conducive to the evolution of Fe-using enzymes that assimilate abiogenic NH(4)(+) and NO(2)(-). The N demands of an expanding biosphere were satisfied by the evolution of biological N(2) fixation, possibly utilizing only Fe. Trace O(2) in late Archean environments, and the eventual 'Great Oxidation Event' c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)-based N(2) fixation and the Mo-dependent enzymes for NO(3)(-) assimilation and denitrification by prokaryotes. However, the subsequent onset of deep-sea euxinia, an increasingly-accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N(2) fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic NO(3)(-) assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo-rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage.
منابع مشابه
Herbicides and insecticides effects on green algae and cyanobacteria strain
The toxic effects of herbicides (Machete, Saturn) and pesticides (Diazinon and Malathion) on green algae, Scenedesmus obtusiusculus, and cyanobacteria, Anabaena flos aquae, were studied. The results indicated that Machete and Saturn, in comparison to Diazinon and Malathion, were more toxic. On the other hand it was revealed that green algae was more sensitive to the pesticides than the cyanobac...
متن کاملHerbicides and insecticides effects on green algae and cyanobacteria strain
The toxic effects of herbicides (Machete, Saturn) and pesticides (Diazinon and Malathion) on green algae, Scenedesmus obtusiusculus, and cyanobacteria, Anabaena flos aquae, were studied. The results indicated that Machete and Saturn, in comparison to Diazinon and Malathion, were more toxic. On the other hand it was revealed that green algae was more sensitive to the pesticides than the cyanoba...
متن کاملRemoval of heavy metal (copper) using Microalgae (Spirulinaplatensis) by Taguchi Method
Environmental pollution by heavy metals is one of the main problems in the environment. Biosorption, is inactivated or live and dead biomass is used for the removal of heavy metals. In this study, a micro alga (Cyanobacteria) Spirulina platensis was used as adsorbents for the remediation of copperfrom aqueous solution.The purpose of this research is to study the possibility or impossibility of...
متن کاملMolybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures
Molybdenum (Mo) is an essential micronutrient for biological assimilation of nitrogen gas and nitrate because it is present in the cofactors of nitrogenase and nitrate reductase enzymes. Although Mo is the most abundant transition metal in seawater (107 nM), it is present in low concentrations in most freshwaters, typically <20 nM. In 1960, it was discovered that primary productivity was limite...
متن کاملUnderstanding nitrate assimilation and its regulation in microalgae
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2009